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DYNAMIC STALL

by

Peter Crimi

Leader, Special Projects Group

Avco Systems Division

201 Lowell Street

Wilmington, Massachusetts 01887

U.S.A.

SUMMARY

Problems associated with unsteady stall are summarized and past experimental and theoretical

studies, relating primarily to dynamic stall of helicopter rotor blades, are reviewed. The problems

attendant to analytic treatment of dynamic stall, including identification of relevant flow elements and

definition of unsteady separation, are then discussed, and the basis for a theory which accounts for vis-

cous effects and viscous-inviscid interactions analytically is presented. Results of computations are

compared with measured loading on an airfoil undergoing sinusoidal pitching motion. The amounts of

lift overshoot and their variation with frequency are in good agreement. Analyses of wake-induced stall

and stall flutter of a helicopter rotor blade are then presented. The results indicate that the large stall-

related torsional oscillations which commonly limit helicopter forward speed are the response to rapid

changes in aerodynamic moment which accompany stall and unstall, rather than the consequence of an

aeroelastic instability.
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1. INTRODUCTION

Unsteady stall and separation phenomena have been receiving considerable attention due to recent

developments in two widely separated areas. The introduction of gas turbine power in helicopters and the

evolution of rotor blade design have effectively removed the power limitation from helicopter performance.

One of the more serious problems now limiting forward speed and gross weight is the occurrence of unac-

ceptably large blade torsional oscillations due to the periodic stalling and unstalling of each blade on the

retreating side of the rotor disk (Ref. l). Since the problem does not impact directly on either the thrust-

producing capability or power requirements of the rotor system, its resolution would result in significant

performance gains.

Stall problems have also arisen at the other extreme of the flight envelope. The space ahuttle orbiter,

in having to operate over a wide range of aerodynamic environments, can undergo numerous potentially det-

rimental unsteady stall phenomena, as outlined in Reference 2.

Dynamic stall is involved in continuing problems in other areas as well of course. Notable examples

are rotating stall in axial-flow compressors {Ref. 3) and stall flutter of propellers and compressor blad-

ing (Ref. 4).

The studies which formed the basis for this paper were motivated by the helicopter stall problem, as

is reflected in what follows. However, there is a considerable degree of commonality among the various

problems involving unsteady stall, so the developments presented here should have relevance to other areas

as well.

Early experimental studies of unsteady stall, such as those reported in References 5, 6, and 7,were

concerned primarily with the stall flutter problem. From this work, the stall flutter mechanism of nega-

tive damping, or moment variation to extract energy from the flow, was deduced. More recently extensive

tests on two-dlmenslonal airfoils sinusoidally pitching or plunging through stall were carried out (Ref. 8)

which make evident the complexity of the unsteady stall process. Both lift overshoot, or llft in excess of

the maximum static value, and unstable moment variation were found to be strong functions of frequency,

amplitude,, mean incidence and Mach number.

Typical results from Reference 8 , shown in Figure 1, illustrate the complexity of the problem. Nor-

mal-force and moment coefficients are plotted versus instantaneous angle of attack, with the static varia-

tion superimposed, for three values of reduced frequency of oscillation k. The tests were conducted with

two-dlmensional flow at a Mach number of .4, using a 10% thick cambered airfoil pitching about the quarter

chord point. Lift hysteresis is seen to increase somewhat by changing k from .062 to . 185, but with k of

• 302, there is almost no hysteresis. Lift overshoot, on the other hand, is relatively constant at about 25%

of the maximum static Cn for all three cases, although similar tests for a symmetric airfoil reported in

Reference 8 showed a large increase in overshoot with increasing k. It should be noted, too, that increasing

kincreases the area of unstable moment variatlon(clockwise loops), but that the maximum nose-down

moment occurs with k = . 185.
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Othertests, of morelimitedscopebutemploying
specializedinstrumentationandflowvisualizationtechni-
ques,haverevealedanumberof importantaspectsof
theproblem. Theformationofa leading-edgebubble,
normallyassociatedwithairfoils subjectto leading-edge
stall, wasdetectedin testsonmodelrotorblades(Refs.
9andI0). Detailsofthestall onsetprocessduringleading
edgestall, whereina regionof highlyrotationalflowforms
at theleadingedgeandgrowsprogressivelyfromthelead-
ingto thetrailingedge,wasdescribedin Referencel and
waslater observedin testsonamodelrotorblade(Ref.
ll) andonatwo-dimensionalairfoil (Ref. 12). Results 0 ,2 .8 1.0

"411c'6

jt

Re¢. io s

k.O.r

a • ;S" + 14" Sm _1

from Reference 12 are shown in Figure 2, where upper-

surface chordwise pressure distributions are plotted for Figure 2. UPPER-SURFACE PRESSURE DISTRI-

several successive instants during stall onset for a NACA BUTIONS AT STALL ONSET (FROM REF. 12)

0012 airfoil pitching at a reduced frequency of . 1 with a

mean incidence of 15 degrees and an amplitude of 14 degrees. The formation and growth of the trapped-air

region are clearly marked by the secondary suction peak which progresses downstream with increasing

angle of attack.

Analytical studies of various aspects of the stall problem as it relates to helicopter rotor blades have

been carried out. Patay (Ref. 13) analyzed the unsteady boundary layer on a pitching ffoukowski airfoil,

and concluded that the flow in the boundary layer is essentially quasi-steady for dimensionless pitch rate

b/U as large as .05. Analyses of the unsteady laminar boundary layer on a rotating blade (Ref. 10) sim-

ilarly showed that the chordwise pressure gradient dominates over both unsteady and rotational effects.

The unsteady load on an oscillating stalled airfoil, for prescribed separation point location, was derived

by Woods (Ref. 14), using classical unsteady thin-airfoil theory as a basis.

A number of analyses of unsteady stall of two-dimensional airfoils and rotors have been performed

with viscous effects taken into account empirically. Ham (Ref. 15) analyzed a two-dimensional model con-

sisting of discrete vortices shed from both the leading and trailing edges. Ericsson and Reding (Ref. 16)

employed a quasi-steady approach which uses measured static airfoil characteristics. Carta and Niehanck

{Ref. 17) utilized data from tests of two-dimensional oscillating airfoils and energy considerations to anal-

yze stall flutter of a rotor blade. Rotor control loads due to stall are predicted by Tarzanin (Ref. 18) using

an empirical model, again derived from data taken on oscillating airfoils, from which instantaneous loading

during stall is computed. These methods generally yield good correlations with test data. A representa-

tive example is shown in Figure 3, where results obtained by Ham are compared with measured variations

with time of lift and moment coefficients at stall onset.

While much insight regarding the unsteady stall process has been gained from both the experimental

and the theoretical studies described above, the basic mechanisms for most important aspects of the prob-

lem have remained undefined. For that reason, a major portion of this paper has been devoted to a recent-

ly developed theory and its applications, which, it is felt, provides a better understanding of dynamic stall

and the various factors contributing to its impact on specific systems. The theory, presented in Section 3,

various details of which can be found in References 19, 20, and 21, was derived on the premise that analy-

tic accounting of viscous effects and viscous-inviscid flow interactions is necessary to obtain an understand-

ing of the underlying mechanisms of the stall problem. In taking this approach, a number of decisions were

required concerning whichflow elements must be regarded as essential to the stall process and what ap-

proximations could reasonably be employed in modeling those elements and their interactions. These as-

pects of the problem are discussed in the next section.
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Z. PROBLEMS IN MODELLING DYNAMIC STALL

Stall Mechanisms and Flow Elements

Even under steady conditions, airfoil stall is a complex phenomenon, with the loading dependent

on many parameters, including Reynolds number, Mach number, leading-edge radius and thickness.

The three basic mechanisms of stall in two dimensions, as first identified specifically by McCullough

and Gault {Ref. 22) will be reviewed at this point to facilitate the delineation of the flow elements for the

more general problem.

Trailing-edge stall is the most easily identified of the three types, being due to the separation of

the turbulent boundary layer near the trailing edge. Increasing incidence moves the point of separation

progressively forward along the airfoil, resulting in a gradual decrease in lift and increase in drag, as

indicated in Figure 4a, This type of stall generally occurs on relatively thick airfoils at high Reynolds

numbers.

Leading-edge stall is related to the formation of a small ._eparation bubble near the leading edge.

At a fairly low incidence, laminar separation occurs near the point of minimum pressure at the leading

edge. The flow reattaches a short distance downstream of the separation point because of transition

from laminar to turbulent flow in the free shear layer with subsequent turbulent mixing and reattachment.

As the angle of attack increases, the bubble moves closer to the leading edge, grows slightly shorter and

somewhat thicker. The bubble has almost no effect on integrated loads, because it is never more than a

few percent o£ the chord in length. At some angle of attack, the bubble bursts and the flow separates from

the entire upper surface of the airfoil, resulting in a sudden loss in lift, as indicated in Figure 4b. The

precise reason for the bursting of the laminar bubble has been the subject of considerable controversy.

There have been correlations attempted with bubble length and with boundary-layer momentum thickness

at the point of laminar separation, with little success. There is a strong indication, though, that there

is some maximum amount of pressure recovery which can occur in the turbulent mixing zone and still

allow reattachment, and at some incidence the required recovery exceeds this maximum, causing sudden

separation. Excellent reviews of the various theories and evidence related to leading-edge stall are given

in References 23 and Z4.

Thin-airfoil stall, which occurs at relatively low Reynolds numbers on thin airfoils, is character-

ized by the appearance of a laminar bubble springing from the leading edge at a relatively low incidence.

Unlike the bubble formed prior to leading-edge stall, its point of separation remains fixed with increasing

incidence while the bubble grows progressively larger. The processes of bubble formation and reattach-

ment are not well understood (Ref. Z3). The resulting lift curve is as sketched in Figure 4c. Because of

the uncertainty as to precise mechanism of thin-airfoil stall and its relatively infrequent occurrence, the

theory described in Section 3 does not include a model of the thin-airfoil stall mechanism. Elements

necessary to account for both leading-edge and trailing-edge stall have been represented, however.

Lift

Angle of attack

O Trailing - ¢_Ig_ stall

Lift

Anglm of attack

b Leading-adQe stOII

Lift

_ngI¢ of attack

C Thin- airfotl StOII

Figure 4. THE THREE TYPES OF AIRFOIL STALL



The primary flow elements of unsteady leading-edge or trailing-edge stall of a two-dimensional

airfoil can be specifically identified, then, as indicated in Figure 5. When the flow is attached (Figure

5a), the flow elements are: (1) a laminar boundary layer extending from the stagnation point over the

leading edge; (2) a leading-edge separation bubble (if separation occurs prior to transition); (3) a turbu-

lent boundary layer from the reattachn_nt point of the leading-edge bubble (or the transition point) to the

trailing edge; and (4) a potential flow over the airfoil, including the effects of a vortical wake generated by

the variation in time of the circulation about the airfoil. If the airfoil undergoes leading-edge stall (Figure

5b) and one regards the flow in the trapped-air region as essentially quasi-steady,* the flow elements are:

(i) a laminar boundary layer to the point of separation; (2) a laminar constant-pressure free shear layer

to the point of transition; (3) a turbulent c0nstant-pressure free shear layer; (4) a turbulent pressure-

recovery region; and (5) a potential flow over the airfoil and external to the trapped-air region, again in-

cluding a vortical wake. Similarly, if trailing-edge stall occurs (Figure 5c), the flow elements are: (1)

the laminar boundary layer; (2) the leading-edge bubble (if laminar separation occurs prior to transition);

(3) the turbulent boundary layer; (4) a turbulent constant-pressure shear layer; (5) a turbulent pressure-

recovery region; and (6) a potential flow with vortical wake.

1. Laminar bour_da_ layer 1. Laminar tX_undary tayer
1 L_m;,_ boundary layer

2. Laminar rnlx_ng region 2. I.eadir,g edge b*sbl,Te
2 Le_dir_g edge bubble

3. TurbulEnt mI_ing region 3. Turbulent boun4ar-f layer
3 Turbulent bou0c_a,¥ I_.yer

4. Turbulent rea_t_chment reglo, 4. Turbulent rniwin_ region
4. Ai,_o_l and vortex w#_e

5. Air fo_l a,d vortex wa_e 5. TurlxJlent ,eattochment region

6. A_r_oll _,_d vorle_ wa_e

b. Leading edge stalt c 1-rai!ing ed_Je st_I!
s At_ac h_:t flow

Figure 5. FLOW ELEMENTS

Unsteady Separation

As noted, for example,in Reference 25, vanishing wall shear does not necessarily imply boundary-

layer separation in unsteady flow. A general separation criterion has been postulated in Reference 26,

namely that the boundary-layer equations (but not necessarily the complete Navier-Stokes equations) are

singular at the separation point for both steady and unsteady flows. Strong suFporting evidence that this

is a valid criterion is given in Reference 26, where a clearly defined singularity in the solution for the

boundary layer on a moving wall is obtained in a region of negative wall shear.

What implications the definition of unsteady separation might have in the analysis of dynamic stall

of a rotor blade were investigated by analyzing the laminar boundary layer upstream of the leading-edge

bubble on a 10_/0thick symmetric airfoil (an NACA0012 section with small trailing-edge extension) using

the unsteady finite-difference method described in Section 3. Chordal Reynolds number was 3 million

and dimensionless pitch rate 0p b/U was .0Z5. Results are shown in Figure 6, in which are plotted the

external flow magnitude u e, displacement thickness 6 _ and wall shear as a function of distance along the

airfc_l surface from the stagnation point. The iteration on wall shear used in the finite-difference scheme

diverged, apparently marking a singularity in the solution, at a streamwise mesh point .003 b upstream

*This would appear to be a reasonable assumption, since as will be discussed subsequently, the flow in

the boundary layers is quasi-steady. However, as noted in Section 4, certain discrepancies between

theory and experiment can be attributed to that assumption.



ofthepointofvanishingwall shear(estimatedbyextrapolation),whichis clearlyaninsignificantdistance
in thedeterminationof integratedload. At leastin thecaseof leading-edgestall, then,definitionofthe
unsteadyseparationpointis nota critical problem.

The validity of the Sears-Telionis

definition in unsteady turbulent boundary

layers, of relevance to analysis of trail-

ing-edge stall, is not immediately evident

although it is asserted in Reference 26

that the extension is permissible. In any

case, it would appear that this need not

be of concern, since unsteady effects in

the turbulent boundary layer were found

to be relatively small for pitch rates nor-

mally experienced by rotor blades. Fig-

ure 7 compared analyses of the boundary

layer downstream of the leading-edge bub-

ble, again for 0pb/U = .025 and a Reynolds

number of 3 x 10 b, one using the full un-

steady boundary-layer equations (quasi-

steady eddy viscosity) and the other with

time derivatives dropped from both the

boundary-layer equations and the expres-

sion for the imposed pressure distribution.

The point of vanishing wall shear with

quasi-steady flow assumed is seen to be

only about 3.5% of the chord upstream of

the point obtained using the complete equa-

tions. While one cannot conclude definitely

that if unsteady effects are small, the sep-

aration point is close to the point of van-

ishing wall shear, that is the case for the

laminar boundary layer, as indicated in

Figure 6. For lack of both an alternative

and evidence to the contrary, then, it must

be assumed at present that the steady-flow

definition of separation is applicable in the

analysis of traillng-edge stall.

Stall Onset and Unstall Processes

In the case of trailing-edge stall, the

stall onset and unstall processes are clearly

defined by the movement of the separation

point of the turbulent boundary layer. The

situation during leading-edge stall is more

complex, however.
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After the leading-edge bubble bursts,

the trapped-air region immediately begins

to form, growing progressively from the

leading edge to the trailing edge as fluid

is garnered from the free stream by the

actions of viscous shear and pressure

gradients. The data in References 11 and

12 indicate that the rate of growth of the

region is considerably less than the free-

stream speed (roughly .1 U to . 3 U). The

following arguments can be made to the ef-

fect that the growth rate must, in fact, be

of the order of the free-stream component

normal to the airfoil chordline.

Let it be assumed that the assimila-

tion of fluid mass takes place primarily

at the downstream end of the trapped-air

region, and that the fluid is trapped in the

funnel-shaped region subtending an angle

, as sketched below (lengths and velo-

cities shown are approximate, assuming

angle of attack _ is small}. Let f be the
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fraction of fluid entering the funnel which ultimately

becomes part of the trapped-air region. Then the

rate of increase of the mass of captured air is given

approximately by

rh--f

But _h

rh_p

that

is proportional to the rate of increase of area;

_s _ s Equating the two rates, it follows

I
U

_s _ (ftan _ ) Ua

Thus, if f tan_ is a number of order one (i.e., if

most of the fluid is indeed trapped at the downstream

end), _s is of the order of U a .

The mechanism for initiation of unstall of an airfoil which has undergone leading-edge stall is pre-

sently unclear. In lieu of a direct means of determining when unstall occurs, the following procedure can

be employed, if analysis is by forward integration in time. Suppose that at time t the airfoil is stalled.

If, in the interval from t to t + At, the unstalt process had begun, the portion of the trapped-air region

near the leading edge _ould presumably have been washed away by the free stream, and a leading-edge

bubble v_uld have formed. It is only necessary, then, to postulate that that sequence of events had

occurred and to analyze the leading-edge bubble. If the bubble bursts, then unstall could not have taken

place, and the analysis continues with the airfoil remaining stalled. Otherwise, the unstall process is

initiated. That process, during which the free stream recaptures the trapped fluid, must be similar to

that of stall onset, so it would seem reasonable to assume that the wash-off rate is also of the order of

the free-stream component normal to the chordline.

Other Factors

A number of other effects can play a significant role in the unsteady stall process under certain

circumstances. For example, the amount of llft overshoot and hysteresis during sinusoidal pitching of

an airfoil is a strong function of Mach number (Ref. 8). Compressibility effects can also cause periodic

high-frequency stall and unstall of the airfoils at high subsonic Mach number and fixed incidence (Ref.

Z7). Three-dimensional effects are necessarily important in the stall of low-aspect-ratio wings and

compressor blades. On the other hand, it was found that spanwise-flow effects were relatively small

compared with chordwise pressure gradients on a helicopter rotor blade (Ref. I0). Separation from

fuselages and similar bodies can result in complex unsteady phenomena such as periodic vortex shedding

(Ref. 28), or randomly occurring asymmetric yawing moments (Ref. 29). Clearly, taking these and sim-

ilar effects into account analytically could prove to be a formidable undertaking.

3. ANALYTICAL REPRESENTATION OF FLOW ELEMENTS

General Approach - Assumptions and Limitations

The basic objective of the analysis described in what follows was to construct a workable analytic

model for unsteady airfoil stall, particularly as it relates to helicopter rotor blades, by representing

each of the individual flow elements identified previously and consistently accounting for their interactions.

Consideration has been limited to tw_-dimensional incompressible flow. Empirical relations were avoided

throughout (except, of course, in the analysis of transition and turbulent flow, where their use to some

degree is inevitable) even though employing them at certain junctures would have measurably improved

quantitative agreement with test results, in order to extract as much information as possible regarding

the role played by each flow element in the stall process.

In the formulation, the inviscid flow determination was regarded as a mixed boundary-value prob-

lem, with flow tangency required where the flow is attached and pressure specified in the separation

region. The model for the trapped-air region provides the pressure distribution to be imposed. Taking

this approach avoids the need for a direct accounting of displacement of the inviscid flow by the viscous

flow. The only direct iteration between viscous and inviscid-flow solutions then required is one which

locates the separation point.

Potential Flow

Given the airfoil section characteristics and motions, together with the distribution of pressure in

the dead-air region if the airfoil is stalled, the flow and pressure over the airfoil must be determined in

order to compute the integrated load and analyze the boundary layer. The problem is formulated as fol-

low s.



10

Consider an airfoil of infinite span and chord Zb subjected to a uniform, incompressible free

stream of magnitude U(t). Let @p(t) and h (t) denote the pitch angle and plunging rate of the airfoil, as

shown in Figure 8. Further, let camber and thickness distributions C (x) and T (x), respectively, be

defined by

i[ ]C(x) =-_ YU (x) + YL (x)

1 (x)]T(x) : _- [Yu (x) - YL

where YU and YL are the ordinates of the upper and lower airfoil surfaces, respectively, measured from
the chord line.

Only the problem of a stalled airfoil need be considered, because the solution for attached flow is

readily recovered as a special case. The coordinates of the separation and reattachment points and the

prescribed pressure between those points are denoted x s, x R and Pd' respectively.

Figure 8. COORDINATE SYSTEM FOR POTENTIAL FLOW

In what follows, a perturbation velocity potential is derived l:y paralleling the approach taken by

Lighthill (Ref. 30) for the problem of steady, attached flow, in order to obtain a solution which is uni-

formly valid to second order in the vicinity of the leading edge. The first step requires the derivation of
a linearized solution.

Thus, let u (x, y, t) and v (x, y, t) denote components of the flow perturbation in the x and y direc-

tions, respectively, and let p (x, y, t) denote the pressure. To first order, the boundary conditions which

must be satisfied, for x R > b, are then given by:

where

v (x, 0 _, t) = -+ UT' - w,

v (x, 0 , t) : - UT' - w,

p (x, 0 +, t) : Pd (x, t),

p (x, 0 -+, t) =Pd (x, t),

-b__x_<Xs;

Xs< - x<b;

x s < x _< b;

b _< x_<x R.

w : U (_}p - C') + h + (x - ab) @p

and similarly for the case with x R _ b.

The (+) and (-) signs affixed to the zero arguments designate the sign of y in the limit y-* O. It is further

required that the flow be continuous at the trailing edge (the Kutta condition) and at the separation point.

Assuming the flow is irrotational, a perturbation velocity potential _ can be formulated by distribut-

ing source and vortex slr, gularltles on the x-axis:

X o

, _ 1 / [ .t (_, t)tan-I (x__.._) ao (_ t) _n _//_x__ )2 +y2 ]2r " , d_

-b
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wherexomarksthelocationofthestartingvortex. It is convenientto separateoutthicknesseffects.
Thus,let

(x, t)
0

= 2 UT', - b z- x A x
S

= 2 UT' + a (x, t), x s __4 x Z__b;

= a (x, t), b < x 6x R

= O, x R < x _/= x o.

Also, the vortex strength for x >_ b is known in terms of the strength on the airfoil, through conservation

of circulation:
b

f

7 {b, t) - 1 d / 3' (x, t) dx (1)

U dt
-b

and the vorticity downstream of the trailing edge is convected at the instantaneous free-stream speed {to

first order), retaining the strength it had upon formation at the trailing edge, as prescribed by Eq. (I}.

With the potential formulated in this way, the two unknown functions are the vortex strength 3` on

the interval (-b, b) and the source strength _r over the intervaI {x s, XR). The boundary conditions,

written in terms of these two functions, are found to be (for x R > b):

b Xo

1 f "r(('t) d( = Zw1/x-( - --,r _w( _ ' t) d _ "b L x L Xs;(2)x-_ ' -- --7r

-b b

b

x 0

e (x, t)+ l / Y(E' t) d _ Z w 1 fb _w( (' t) d_

(3)
x- E r x- ( ' Xs--xZ'b;

-b

x R

l / _r ( _, t) d_, Z(Pco- Pd ) 2U /b T'(_) d_
3` (x, t) +

x -_ pU _ x -_
-b

x S

x R

1 _ x 3` ( ( , t) d( +-- _ ( ( , t) _h I x - (Id( (4)

U 3 t _r

-b x s

b

+z u; / r' _)]a'x- _'d_ I'

-b

x _x L b;
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xR
1 f a ( }' t)d} Z (pco-Pd) aU

Jrr x-_ OU 7r

x 8

u _t
l f xR7r

x s

b T,i})d _x -

-b

( },t)/alx- _ I d_ is)

b

U L T' ( _)_a I x - { I d{ I b <x < x •+ -- ' -- -- R

7r b

The Gauchy principal value is taken for the singular integrals. A subscriptw has been affixed to 3'

for x > b to indicate that it is known in terms of "y for x<b.

Equations iZ) through (5) were solved by first casting Y in series form, with unknown coefficients,

and taking a (with a singular term subtracted) to vary linearly between prescribed points on the x-axis,

the value of a at each of those points being unknown. Equations (2) through (5) provided the relations needed

to solve for the unknown coefficients and the values of a .

This procedure required that the functional form of 3" and # , i.e., the locations and types of singu-

larities, first be determined. For that purpose, an analytical solution was derived for the case of steady

flow about a stalled flat plate with constant pressure in the dead-air region. The derivation is outlined in

Appendix A.

The solution for steady flow, as given in Appendix A, shows, first, that if x R is greater than b,

has the same functional form as for attached flow, i.e., 3" has a square-root singularity at the leading

edge and is continuous at both x = x s and x = b. If x R is tess than b, however, _ has a square-root

singularity on the downstream side of x = x R. Furthermore, regardless of the value of x R, o is zero at

x = x s and has a square-root singularity at x = x R (necessarily on the upstream side).

Thus,

? ix, t)

U o

3" was taken to be of the form

Ny

E-- ÷
-A° +x

n= 1

A n sin n O

+ 1 + -- 1 - -- A + --
4U b b o 2

_A R 1 _
b b x - x R

(6)

where cos @ - x/b, Uo is a reference velocity and the coefficients A_ through A._ and An are functions
- " D F_'f IX

of time. The term with the factor A R is dropped if either x R--x- b or x <x R. The factors involving x in

the last two terms make Eq. (6) satisfy Eq. (I) identically, as can be verified by direct substitution.

The form of a was defined by first dividing the interval (x s, x R) into N¢

x ¢i given by

x¢i = --_ (x R + Xs) - -7 (x R - Xs) COS C

segments with end points

i = l, 2 ..... N + 1;

whereupon

a..i x, t) _ _x -_x sx + (Xai+lx - x)Bi + (x - xai ) Bi+ 1
U° B° XR a i+l - x c; i

i7)

xai_< x<x ai_l

(BI :B_I=_ 0)

where the Bi's are unknown functions of tinne,
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The coefficient A R in %', which is one of the unknowns when x R < b, is in fact proportional to B o.

If Eqs. (6) and (7) are substituted in Eq. (3) and the limit x--*x R is taken, it is found that the result can

only be finite at x = x R (which it clearly must be) if

XR x R - x s Bo
AR = - b b

Thus, there are just N a + N? + 1 quantities to be determined at a given instant to completely define the

flow and loading on the airfoil.

A set of linear algebraic equations was derived, using Eqs. (2) thzough (5), to provide the relations

needed to solve for the unknowns. Specifically, after substituting Eqs. (6) and (7) for _' and _, respec-

tively, the flow-tangency boundary condition (Eqs. (Z) and (3)) was imposed at points x? , where
n

(n - 1) _ ]x 7n = b cos
N.y

, n = 1, 2 ..... N?+ 1 ;

and the pressure boundary condition (Eqs. (4) and (5)) was imposed at points x ,rn, where

1

x _ n Z (x a n + x ¢;n + 1)' n l, Z ..... N a

In the development of the linear algebraic equations, a number of assumptions and approximations

were required.

Derivatives with respect to time in Eqs. (2) through (5) were approximated by second-order finite

differences. Given the value of, say, A o at times t, t - A t and t - 2 At, the relation

• 3 A o (t) - 4 A o (t - At) + A o (t - Z A t) + 0 (( A t)z)

A o (t) = Z A t

_was utilized, and similarly for the other required time derivatives.

Thickness and camber distributions were represented by trigonometric series so the integrals in

which those functions appear could be evaluated analytically. Specifically, T and C were written in the

form

[ o z ]1 (1 - cos O) -- + sin O t n sin n 0

T = b sin @ _ b n=l

K-"
C = b sin @ _._ c n sin n @

n=l

where cos @ = x/b and r o is the leading-edge radius. It was found that, using 24 terms, these series ap-

proximated the actual offsets of conventional NACA sections to within one percent (about .l percent of

chord) over the whole chord.

The wake downwash integrals appearing on the right-hand side of Eqs. (2) and (3) were evaluated by

first specifying that the value of _/ w be known at discrete points along the x-axis, with Ihe points spaced

at a distance corresponding to the time increment At used for integration in time. The strength at each

point is obtained as follows. Numbering the wake points from 1 to N w (N w increases by one after each time

step), with point 1 at the trailing edge and point N w at x = Xo, then 7Wl (t) is computed from Eq. (1), us-

ing a second-order finite-difference approximation for the time derivative, while %'w, (t) = 7w .(t" At)

for n = 2, 3, . . . , N w. The vortex strength is assumed to vary linearly between the"designatednp-olints at

which %" is known.
W

While the linear solution provides a good approximation for integrated loading, the flow and pressure

distribution are singular at the leading edge, and so cannot be used to analyze the boundary layer. This

difficulty can be resolved, in a manner similar to that employed in Reference 30, by including second-order

terms in the potential and formulating the expression for the fluid velocity at the airfoil surface in such a

way as to make the solution uniformly valid.

The functions a and "Y can be regarded as the first terms in series of ascending order repre-

senting the exact solution of the boundary-value problem. Let ag and "YZ denote the second-order terms
in those series. If the full nonlinear flow-tangency requirement zs expanded out to second order, and

terms of like order are grouped in the usual manner, then a Z and "/ 2 are found to be governed by the
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following expre s sions :

b

zu _ /_2- _ 8 x
-b

X o

1 _ "F2 ( _ , t) d_
2 _r x- _

-b

T'( }[ )d_

x-

o
= (TT)

8 x

These relations are strictly applicable only to the case of attached flow. A complete accounting of

second-order terms for a stalled airfoil could not be justified, in light of approximations made in the

analysis d the trapped-air region. For that case, the result has been made uniformly valid to first

order,

Note that the equation for %' 2 is of precisely the same form as the one for 7 for attached flow.

Hence, the same relations used to solve for _t could be used to obtain 7 2 after computing _.

The same basic procedure as the one developed by Lighthill for steady flow (Ref. 30) was followed

in deriving the formula for the magnitude of the fluid velocity at the surface q. The x-component of q,

denoted qx' is of the order of free-stream speed U, while the y-component, qy, is of first order in
whatever expansion parameter one chooses to use. Thus

while

2
/

q = qx q 1 + (qy/qx) z = qx + 21 _yu + higher order terms. (8)

b

¢)p + l i Ji (2UT' + a Z) d--Ucos .-f-( v + "tz)+Us+--qx
2,r x- _

-b

+ UTT" + third-order terms.

X

1 7 d_ +v + UT' + second-order terms.

qy = U sin @p Z ,r x - _ s -

where @ is pitch angle and u s and v s are contributions from the source distribution representing the
P ....... E

dead-air reglon when the alrfoll is stalled. If these expresslons for qx and qy are substltuted in ,q.

(8), the expected term which is singular at the leading edge due to a factor (b + x) -I/z is obtained, lJow-

ever, there is" also a second-order term which is singular due to a factor (b + x) -1, namely U[TT"+I_-(T') jZ]

which is approximately equal to -.Z5 Uro/(b + x) near the leading edge. A uniformly valid approxima-

tion for q is obtained, using Lighthill's procedure, by subtracting off the singular part of the offending

term and multiplying by the factor

( b+x ).1/2
b +x + ro/Z

which restores the complete expression to its original form, to second order, some distance from the

leading edge, and makes the result finite at the leading edge. The complete expression for q, uniformly

valid to second order, with attached flow, is then
b

= U cos @ + l l

q b + x + ro/ P - _- ( v+ V2 ) + u s + UTT" +2 ,r x -

_b" ]2 Ur °

X o

1 U sin @p- V d} -+v s + UT' +
2_ x-} - 4(b +x)

The pressure coefficient on the airfoil is computed from

+
= _ I 8 _ (x, 0-, t)

Cp 1 - (_2 U 2 8 t

Boundary Layer

Because the relative importance of the individual elements of the boundary-layer flow as they

affect dynamic stall could not be established in advance, the representation of the boundary layer was

made as general as possible to ensure that the effects of all essential elements were taken into account.
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The method of finite differences, rather than an integral method, was selected for the analysis of both

laminar and turbulent boundary layers because accuracy and computer requirements are readily con-

trolled and the simpler formulation allowed rapid initial check-out of computer coding. The Smith-

Cebeci eddy-viscosity model (Ref. 31), v_lich has given good results for a wide range of Reynolds num-

bers and various types of pressure distribution, was chosen to represent the turbulent shear.

The boundary-layer equations were cast in the following dimensionless form for the cases of both

laminar and turbulent flow:

_qs + q _qs + q_? _ qs = _ P ÷ _ ( - C_qs )
(9)

q_ __qs + 0 (i0)

_ s _

Physical quantities relate to the variables in the above equations as follows. The flow component parallel

to the surface is Uoq s , the flow component normal tothe surface is U o qy /_-_b' where Re bis Reynolds

number based on semichord, time is bt/Uo, distance aiong the surface is bs, distance normal to the sur-

face is b _7 /_'eb and pressure is p UoZ_. For laminar flow, _'e = 1 and for turbulent flow

E

7=1+ --
e v

where v is kinematic viscosity and e is eddy viscosity. In terms of the variables defined above (see

Ref. 31)

c

g

whe re

K-
Z6

and

1.'

-Kz[ I _. 16 _Z_J'-_- b (1 - e ) I = ,,

(Reb) \'-'_ ]_/ : 0 + _s

.0168 (qe/Uo) _*

_f'_b[1 + 5.5 (7/I_')6]

= E o' _1> _1o

< _1o;

I/Z

where oo

-, f= (1 - qs Uo/qe) d_]

0

while _ is the value of 7/ at which qs = 995 qe/Uo and 7 ° is the value of '7 at which -f =• i o

The method employs variable step size in both the s and _? directions. The error in each finite-

difference approximation is of the order of the square of the step size. The differences were formulated to

allow computation of the flow at time t and streamwise coordinate s , given the flow at times t - At andm +1
t - Z A t at all streamwise coordinates and the flow at streamwise coordinates s m and s for time t.m-I

The solution for the flow at Sm+ 1 is obtained by iteration. For the first iteration, the difference

equations are linearized by employing extrapolation formulas for qs' q_ ' "F e and c) V%/_r? in nonlinear

terms. For the second and succeeding iterations, the values computed in the previous iteration are employ-

ed in place of the extrapolations.

Substitution of the finite-difference approximations in Eq. (9) yields a set of linear algebraic equations

of the form

7n qsm+l, n-I + Bn qsm+l, + _n + _ = _n qsm+l, n+l n qsm+l, n+2 n

(ii)

n = 2, 3 ..... N_ -I

where the coefficients _n through D and F only involve flow quantities computed at s m and sin_ 1 at time t
• . n n

and at sin+ 1 at prewous tlme steps. After setting qsm+ l equal to zero and qsm+l,Ngand qsm+l,Ny +l equal

to qem+I/Uo, Eqs. (ll) are readily solved by successive elimination. Equation (10) can then be used to
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compute q _ , from

q'o = -
0 C3s

using a trapezoidal approximation.

dR

The aforementioned iteration uses wall shear as the criterion for convergence, the allowable error

being . ] percent, Some difficulty with convergence was encountered under extra'he conditions. This prob-

lem was resolved by smoothing the eddy viscosity variation with _ , as was done in Reference Zl. After

%- is computed, its value is replaced by the mean of the values at three adjacent points.

Given values of r_ andThe grid in the _ direction is computed from a geometric progression.

_2 ( _l _" 0), _ is computed from
n

'7n =(I +r_ ) T;n_ 1 -rT; _ n-Z' n=3, 4 ..... N 77 +I

At a given instant, the boundary layer thickness at the trailing edge is generally an order of magnitude lar-

ger than at the stagnation point. To accurately compute the flow at these extremes with a single grid in the

'7 direction would require several hundred mesh points in that coordinate. About two hundred points are

needed in the s-direction for a typical airfoil. Thus, an inordinate amount of computer storage would then

be required, because the value of qs at every mesh point for two time steps must be stored, Therefore, it
was decided to make the _ -scale variable. If, upon completion of the flow computation, the boundary-

layer thickness _ exceeds _ N_ .-2'r_ is increased by a set amount, a new, expanded ,7 -scale is
computed 0nd the flow quantities at the new mesh points are assigned by interpolation• The variation of

the interpolated quantities is smoothed by three-point averaging, and computations proceed as before. The

value of r,7 is stored with the flow quantities so the boundary-layer profile can be reconstructed x_hen

needed. It should be noted that the value of _Z is not changed when the 77 -scale is expanded. This is nec-

essary to avoid numerical instability. Using the variable _-scale, only about 75 points are needed in the

'7 -direction.

The computation is initiated at each instant using the Hiemenz stagnatlon-point profile (Ref. 32). The

turbulent boundary layer downstream of reattachment of a leading-edge bubble is started from an equilibri-

um profile with a small but finite shear, taken from Reference 33, matching the computed displacement

thickness with that of the equilibrium profile.

In the analysis ol the laminar boundary layer, the solution at each s m is used to determine whether

transition occurs, accounting for the effects of free-stream turbulence and pressure gradient. The fol-

lowing formula, which is a modification of a result given in Reference 34, is used to compute transition

Reynolds number Re 6 tr :

-_e) + fp ( A ) Re - 9860 = 0 (iZ)
3.6 Re2 _ tr _ tr

where u' is the root-mean-square fluctuation of the free stream due to turbulence, A is the K_rman-
• Z is the maximum Reynolds

Pohlhausen pressure-gradlent parameter, A = - ( 6 _ p /_x )/ #qe, and Re6

number, based on boundary layer thickness and local external flow, for whicht_he flow remains laminar.

The function fp(A), plotted in Figure 9, was derived from data given in Reference 32 pertaining to the
effects of pressure gradient on transition, starting from the plot of Re 6_;vs. A (Figure 17.3 of Ref. 32),

where Re 6"i is a Reynolds number based on displacerve nt thickness at t_e point of instability. Using the

Karman-Pohlhausen integral method and the plot of Re 0 - Re0. vs. mean pressure gradient parameter

_, (Figure 17.9 of Ref. 32), where Re@ 'and Re@ are Rt_nolds _umbers based on momentum thickness O

at the points of transition and instabilit V, i -- . Zrespectively, and K is the integral average of - (0 bp] 8x)/# qe'

Re.$ _r was computed as a_functlon" of A and the curve of Figure 9 was constructed. The terms of Eq. (12)

which account for free-stream turbulence (i.e., with fp = 1) were taken directly from Reference 34. The
form of the terms was derived there from arguments concerning the relation of viscous shear to transition.

The relation agrees well with measured transition Reynolds number for a flat plate. Similar arguments

were used in Reference 34 to derive the effects of pressure gradient on transition• The result is an equa-

tion of the same form as Eq (iZ) but with f simply varying hnearly with A . It was felt that the relation
• p

so obtained was not suitable for the problem at hand, in that it did not give good correlation with experi-

ment and does not properly reflect the stabilizing influence of a favorable pressure gradient. The term

accounting for effects of pressure gradient was therefore derived by the procedure previously described.
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FUNCTION TO ACCOUNT FOR PRESSURE-

GRADIENT EFFECT ON TRANSITION

Trapped-Air Region

As was noted previously, the region of trapped air which forms when the airfoil is stalled is assumed

to consist, in the most general case, of a laminar constant-pressure free shear layer, a turbulent, con-

stant pressure mixing region downstream of transition, and downstream of the latter region, a turbulent

reattachment, or pressure-recovery region. The representation of each of these, starting with the reat-

tachment region, is outlined in what follows.

Reattachment region - In this part of the trapped-air region, the layer thickness shrinks to zero while

the streamwise pressure gradient is positive. The separated shear layer may reattach onto the airfoil or

attach onto the layer shed from the lower surface at a stagnation point in the wake. It is assumed that the

flow has a wake-like behavior and that the equilibrium wall layer usually present in attached turbulent

boundary layers can be ignored. The wall shear stre ss is also assumed negligible compared with the prop-

erly normalized rate of change of momentum thickness and the streamwise pressure gradient. These

assumptions and the analytical model which will be employed here have been used by Todisco and Reeves

(Ref. 35) and Hunter and Reeves (Ref. 36) to treat supersonic separated and reattaching turbulent flows.

For negligible wall stress and zero lateralpressure gradient normal to the dividing streamline the

momentum integral and first moment of momentum equations are (Ref. 35)

d _* dH _ * due
H -- + _* + (2H + I) -- -- _-. 0

dx dx U e dx

J d 6" + 6':' dJ dH + 3J _':' due _ K0 H _
dx dH dx Ue dx

Because J = J (H), R = R (H), and K 0 = K 0 (H) are known profile functions obtained from a one-parameter

family of equilibrium or self-similar solutions the dependent variables are the velocity profile shape para-

n_eter H = 0/ 6 *, displacement thickness _ * and the local inviscid velocity at the edge of the turbulent layer

u e. For supersonic separation and reattachment a third differential equation involving these three depen-

dent variables is obtained by coupling the integral continuity equation with the Prandtl-Meyer relationship.

This third equation completes the set. In the case of subsonic flow, the interaction of the separated flow

with the outer inviscid stream is much more comphcated because of the absence of a local relationship

between turning angle and pressure. Rather than attempt a complete matching of the inviscid and viscous

flows, approximate relationships between certain quantities appearing in the integral equations were ob-

tained from the well developed theory of supersonic interactions, and the matching performed in terms of

only a few parameters.

The momentum integral and first moment can be rearranged and combined to give the following explicit

relations for the derivatives of displacement thickness and inviscid velocity:

-33+ (2H+l)dJ/dH (ZH+ 1) K0 HR dx

dH-
d(f,n_':")= - J(H- 1) J(H- l) K._



18

d ( _n Ue)= [ J(H- i;
dH+

KoHZR dx

J(H-I) 6*

These equations are solved using the method of successive approximations. By first assuming that

reattachment occurs over a sufficiently short streamwise distance (compared with the local displacement

thickness), so the second term on the RHS of the first of these equations is negligible, one obtains

H

6"/ 6 b* = exp [ f(H) d H

Hb

where

-3J + (2H + 1) dJ]dH

f(H)=
J(H- I)

and subscript*bdenotes conditions at the beginning of the reattachment pressure rise. Substituting this

first approximation for 6 * into the differential equations for 6 * and u e and integrating gives

H

_n ( 6"1 6b*) = / f(H) dH

H b

I HR ] H
-exp f f(H) dH f

Hb H b

(ZH + I) K 0 HI_

-H
I

J(H - 1)exp J f(H') dH'

Hb

d(H/H R)

dH
(13)

and

H

/gn (Ue/Ueb) = - J Hd J/dH - J dH

Hb 3" (H - t)

X-XR t

+ exp f (H) dH

H d (H/H R) HR

Hb J (H-I) exp J f(H') dH'

H b

(14)

where subscript R denotes conditions at the reattachment point (or wake stagnation point if closure occurs

in the wake). It is now assumed that the streamwise rate of change of the turbulent shear layer velocity

profile (or rather the inverse, d(x/ 6 R*)/dH}is a universal function for all incompressible turbulent reat-

tachment processes. This function was evaluated from several solutions of supersonic reattaching shear

layers with the results shown in Figure 10. The variables x and 6i* are the "stretched" values after hav-

ing been transformed by a modified Stewartson compressibility transformation. Three curves for

(x - x )/6:*,_ versus H/H_, for Mach number M_o varying between 1.3 and Z. 2 are given. It is evident that
R L_ Lx

the curves co_llapse into a single curve as the Mach number is reduced. Thus, it is assumed that the curve

shown for M'oo = 1.3 defines the streamwise rate of change of the profile shape in all turbulent reattachment

processes. Values of the derivative d(x/ _ R*)/d(H/HR) obtained from this curve and values of the profile

function obtained from equilibrium turbulent boundary layer solutions are given in Table I.

Figure 10 also shows the variation of (x - x )/ 6;*, k with H/H n, that is, the reattachrre nt length

normalized by displacement thickness at the beginning of reattachment (only the curve for M = 1.3 is

shown). This curve can be represented quite well by the parabola:

(XR " Xb)] _b* = 10.5 I - (Hb/HRI (15)

Because H b and 5b* are determined by the solution of the constant pressure mixing region this relation-

ship can be used to find the length of the reattachment region without having to first compute the veIocity

and displacement thickness distributions through the reattachment region.

*When not employed as a subscript, b denotes airfoil semichord.
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Table I. PROFILE FUNCTIONS FOR TURBULENT SEPARATED FLOWS a

/x-x R \

83

46

33

26

22

20

20

2O

21

23

25

29

J/JR
d H

0

•18

.28

.37

.46

.54

.62

.70

• 79

.89

1.0

1.12

1.24

I. 08

.95

.91

.90

.90

.91

.93

.96

1.00

• 1.04

1.11

1.18

_/_R

2.98

2.53

2.23

1.98

1.78

1.60

1.45

1.30

1.15

1.00

.86

• 72

r_H

-'RR HR

0

.298

.506

.669

.792

.890

.960

1.015

1.04

1.035

1.00

.946

.864

H R = H S = .429, JR = Js = .654, -RR = .463, And K@ = .05 - .0132(H/HR).

Also, it is convenient to use the product"RH as H--_0 rather than R because

in this limit R--_oo but RH---_0.
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Figure i0. CORRELATIONS FOR TURBULENT REATTACHMENT
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Turbulent mixing region - Since the pressure is constant in this region, the momentum integral and

first moment equations reduce to the following:

d $ 6* dHH + =0
dx dx

d $ * * dJ

J -_x + _ dx =K@HR

Now, let the subscript t denote conditions at the transition point in the shear layer•

lent at the separation point then H t = Hs, 6t _ = _ * etc.S P

If the layer is turbu-

The solution of the first of these equations is

6* H = 6t* H t = constant
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andsubstitutionof thefirst equationintothesecondgives

6t;"Ht (dJH dH HJ )dHdx -K0 HR

Rearrangingthisexpressionandintegratingfromthetransitionpoint(or separationpointfor trailing-edge
stall)to thebeginningof reattachment gives

Hb/H s

6t* =:Is H K0_H(H/Hs) d(H/Hs) (H/Hs)
s Ht/H s

and from the solution 6 H = constant

(20)

6 b':" (Ht/H s )

6t , -- (Hb/Hs )

At the transition point we assume that the velocity along the dividing streamline and the momentum thick-

ness are continuous so that*

and

(0t)la m = (0t)turb

Consequently, since H = O/ 6"

( 6t,",'-)tur b = ( _ _,_ (Hs)lam/(Hs)turb = . 58 (6t*),t _lam lain

Because x t, (H /H ), and ( 6t*)lam are known from the solution of the laminar shear layer, thet _ .l.am
above expressions are suInclent to determine the length of turbulent mixing region and the displacement

thickness at the beginning of reattachment in terms of the unknown profile shape parameter H b at this point.

The laminar mixing region - For the laminar shear layer extending from the separation point to

transition, the momentum integral and first moment equations are {for zero pressure gradient)

d 6* dH (7/H _- + 6* dx = P
\ e" /

d,* dJ ( v )
-- 4 6* = R

J dx dx - "U e _'

whe r e

fP- , R- Z

Ue y =0 Ue _ Y
0

Solution of this pair of equations has been given in Reference 37. The solution presented there was for the

variation of the displacement thickness and dividing streamline velocity as functions of the nor,dimensional

length scale downstream of separation xZ/0s 2 Rex. Since at a laminar separation point it can be assumed

that H s = 0s/ 6s* = . 25, the above length scale can be cast into the form

g

Rex/(Re _s* ) : .062 xg/0s2 Re x

Also, H/H s is a function of u _t-"(the ratio of the velocity along the dividing streamline to Ue), so that the solu-

tion given in Reference 37 can be used here with only slight modification. The variation of H/H s and _*/ _s:"

with distance downstream of separation is shown in Figure 11. Here x is the distance downstream of the sep-

aration point.

*This procedure for finding the turbulent momentum thickness, displacement thickness and profile shape down-

stream of transition is analogous to the method used by Truckenbrodt for attached boundary layers (Ref. 3Z).
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It is assumed that the length of the laminar shear layer is determined by yon Doenhoff's criterion,

( &t;:-"/ _s".:)l are known functions of Re & _', asnamely that (Rex) t = 50, 000. ¢,_ Thus, (Ht/Hs)laro and a . s

indicated in Figure ii. The characteristic velocity in each of theser_eynolds numbers xs the local velocity

at the separation point.

Pressure calculation procedure - Given the locations of the separation and reattachment points and

the pressure at reattachment, it is required to compute the distribution of pressure between x s and x R.

The basic problem is to determine H b and x b. With H b known, the rise in pressure from x b to x R can be

computed directly from Eq. (14). Since the pressure at x R is specified and the pressure is constant from

x s to x b, the pressure distribution is then completely determined.

The two relations used to determine x b and H b are Eqs. (15) and (16). Equation (16) relates x b - x t

(or x b - x s, in the case of trailing-edge stall) to H b, while Eq. (15) relates x R - x b to H b. A simple itera-

rive calculation is performed whereby successive values of H b are assumed and x b is computed from Eqs.

(15) and (16). A solution is obtained when the two results for x b agree within a prescribed amount.

Leading-Edge Bubble

In the analysis of the leading-edge bubble, it is assumed that the beginning of the reattachrne nt region

and the point of transition are coincident. The formulations developed for the viscous mixing and reattach-

ment regions can then be employed, as follows.

From the curves of Figure 8, the conditions at transition, and hence at x b, canbe obtained, given

and 0 at separation from the boundary-layer analysis. Since x b, which is assumed equal to x t, is known

from yon Doenhoff's criterion ((x t - x s) qes/_ = 50,000), x R can be computed directly from Eq. (15).

Also, the pressure rise possible in the reattachment region can be obtained from Eq. (14).

'°_t 1 t II111 I I I I ] II ! ....

-- 10.

=.0

i0. ] = 6 i0- _ _0-1

Figure Ii. H AND S _ VARIATIONS DOWNSTREAM OF SEPARATION

FOR A LAMINAR SHEAR LAYER

It is assumed that the pressure rise across the bubble, from x s to XR, is not affected by the presence

of the bubble. Given x s and x R, the potential-flow solution is then used to compute that increase in pres-

sure. If the pressure rise computed from Eq. (14) exceeds the required pressure rise computed from the

potential-flow solution, it is assumed that the mixing process accommodates to the lower required pressure

rise and that the flow reattaches. If the required pressure rise exceeds the pressure rise computed from

Eq. (14), it is assumed the leading-edge bubble has burst and the airfoil is undergoing leading-edge stall.

It should be noted that, although the above analysis was carried out independently, the key assump-

tions and basic procedures were, in fact, first derived by Horton (Ref. 39). The two approaches differ

primarily in the details of the shear-layer analyses.

Computation Procedure

The procedure used in analyzing the interactions of the flow elements is indicated schematically in

Figure 12. The computations are carried out by forward integration in time, starting from steady,

_,'Gault (Ref. 38) has performed a large number of experinlents in which (Rex) t ranged between Z5,000 and

75, 000 for over 80 percent of the data. ConseqRently, as Gault points out, a unique value for this transition

Reynolds nun_ber is only a rough approximation and is influenced by the turbulence level, pressure gradient,

etc.
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attached flow. At each time step, when the flow is attached, prescribed airfoil motions are used to derive

the potential flow. The flow external to the boundary layer is then computed. The boundary layer and

leading-edge bubble are then analyzed to determine whether the Ieading-edge bubble has burst (leading-edge

stall) or the turbulent boundary layer has separated (trailing-edge stall). If the flow remains attached,

time is incremented, the foil motions are again prescribed and the procedure repeated.

If the airfoil stalls, t he location of the separation point is assumed, the point of reattachment and

pressure at reattachment are computed by a method to be described subsequently, the pressure in the dead-

air region is computed and the potential-flow solution is derived from the prescribed airfoil motions and

dead-air pressure distribution. The boundary layer is then anaIyzed and the computed separation point

location is compared with the assumed location. If the assumed location differs by more than a prescribed

amount from the computed one, a new estimate of the separation point location is made and the potential

flow and boundary layer are again analyzed. When the assumed and computed separation point loc ations

are in satisfactory agreement, time is incremented.

Except at the onset of leading-edge stall, the length of the trapped-air region when the airfoil is

stalled is computed by deriving a bubble growth rate from the potential solution and integrating in time.

The growth rate is computed as follows. The rate of increase of mass of the dead-air region is given, to

first order, by

• pf XRm = _ dx

x
S

The total mass of the dead-air region is roughly proportional to pl s _ where 1 s = x R - x and
is the maximum of _ (x), max' s max

Potonti_ - Flow
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Figure IZ. COMPUTATION PROCEDURE
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where

y(x)

x

:f
0

U

If added mass is all accountable as additional length, then

_s xR O" dx
_s rh x

-- =

_s m _s _max

The primary justification for computing x R in this way is that it gives a closed trapped-air region (i. e. ,

with zero net source strength) in the limit of steady separated flow.

As was noted previously, the growth rate of trapped-air region at the onset of leading-edge stall is

estimated to be of the order of the free-stream component normal to the chordline. On that basis, a value

for _s of . Z5 U at stall onset was selected, except where otherwise noted, for computational purposes.
The same value was assigned to the rate at which the trapped-air region is washed off during unstall fol-

lowing leading-edge stall.

When the dead-air region terminates downstream of the trailing edge, the pressure at x R is taken

to be the free-stream pressure. Ifx Ris less thanb, as occurs at the onset of leading-edge stall, the

pressure at x R is taken to be the pressure at that point if the airfoil were not stalled.

4. RESULTS FOR PRESCRIBED AIRFOIL MOTIONS

A series of calculations of the loading during unsteady stall due to transient and sinusoidal pitching

about the quarter-chord were performed for the modified NACA 001Z airfoil section shown in Figure 13.

The results reveal a number of interesting features of the stall process.

Transient />itching Motions - Static Stall Characteristics

It was found that at a chordal Reynolds number of two million, only leading-edge stall is predicted

to occur. Figure 14 shows the variations, at that Reynolds number, of pitch angle, normal-force and

moment coefficients and length of the trapped-air region with time, as wellas upper-surface pressure

coefficient chordwise variations at three different times after stall onset, for a ramp variation of pitch

angle. The underlying mechanisms of the dynamic stall process are evident from these results. The

substantial lift overshoot seen in Figure 14 derives in part from a delay in bursting of the leading-edge

bubble to beyond the static stall incidence, the effective camber due to pitch rate having reduced the pres-

sure gradient in the vicinity of the leading edge. Carta, in Reference 40, postulated that this might be a

contributing factor. Most of the overshoot

comes after bubble burst, however, and,

as can be seen from the pressure distri-

butions, is the result of the very high

loading induced on the aft portion of the

airfoil by the presence upstream of the

region of trapped, highly rotational fluid.

Note that the large downstream suction

peaks are just downstream of the instan-

taneous terminus of the trapped-air reg-

ion. Because the high loading is on the

aft portion of the airfoil, lift overshoot is

necessarily accompanied by a large nose-

down moment.

The variations of static normal-

force and moment coefficient with angle of

attack were obtained from a series of tran-

sient pitch calculations by parametrically

varying the maximum pitch angle. The

results are compared with measured coef-

ficients, at a slightly higher Reynolds

NACA 0012 (,MODIFIED) _:mm_--_ _- X I

o o I
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numberfromReference8in Figure15.
Agreementin themaximumstaticCnis seen
tobequitegood,althoughthepredictedstall
incidenceis considerablylessthanthemea-
suredvalue,duein part tothedifferencein
slopesoftheCncurvesbelowstall. Accoun-
tingfor boundary-layerdisplacementeffects
wouldpresumablyimprovetheagreementin
thatrespect.

Onewouldexpectthatanairfoil which
is subjectto leading-edgestall ata certain
Reynoldsnumberwouldundergotrailing-
edgestall at amuchhigherReynoldsnum-
ber, sincetransitionwouldthenpreclude
formationof a leading-edgebubble.At
intermediateReynoldsnumbers,presum-
ablyeithertypeof stall couldoccur. Calcu-
lationswereperformedto investigatetheef-
fectofvaryingReynoldsnumberondynamic
andstaticstall characteristicsin this inter-
mediaterangeof Reynoldsnumbers.

Theloadingresultingfromtransient
pitchingthroughstallwasanalyzedfor chor-
dalReynoldsnumbersof 3and6million, for
comparisonwiththeresultsobtainedat a
Reynoldsnumberof2 million. Pitchangle
wasagainvariedlinearlywithtimeupto a
prescribedvalueandthenheldconstant.

IncreasingReynoldsnumberto 3million
causedamarkedincreasein theresistanceto
burstingofthe leading-edgebubble.Theair-
foil doesnotundergoleading-edgestall for
pitchanglesashighasabout16degrees,but
doesexperiencetrailing-edgestall between
about12and16degrees.At a steady-state
pitchangleof 15.8degrees,separationofthe
turbulentboundarylayerhasprogressedup-
streamto nearthequarter-chordpoint.

Astheseparationpointoftheturbulent
boundarylayermovesupthechord,there-
sistanceo£theleading-edgebubbleto burst-
ingcontinuousIydecreases,eventhoughthe
circulationandloadingontheairfoil arede-
creasingaswell. Thereasonfor this is that
theseparatedregionhasrelativelylittle effect
ontheDow in the immediate vicinity of the

leading edge, even though it reduces the load-

ing over the rest of the airfoil. At a suffici-

ently high incidence, the bubble bursts and

leading-edge stall ensues. Results for a case

in which both trailing-edge and leading-edge

stall occur are shown in Figure 16, where the

20F
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Figure 14. LOADING DURING TRANSIENT PITCHING
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Figure 15. STATIC NORMAL FORCE AND MOMENT

COEFFICIENTS (MEASURED RESULTS FROM REF. 8)

loading and the separation point location x s are plotted against time for pitching up to 18 degrees. Note

that very little C n overshoot is predicted in this case.

As expected, a further increase in Reynolds number to 6 x 106 increases the resistance to both

leading-edge and trailing-edge stall, although the effect appears to be somewhat e×aggerated. When the

steady-state pitch angle is 15.8 degrees, the separation point is only about . lc from the trailing edge.

At a slightly larger pitch angle, that point moves rapidIy up the chord. Figure 17 shows the loading and

x s variations with t{me for pitching up to 16.3 degrees. The steady-state separation point is seen to be

about .35c from the leading edge in this case. No C n overshoot at all is predicted for this case.

Leading-edge stall ultimately occurs at high pitch angles for Re c = 6 x 106 , as well, but the separa-

tion point of the turbuIent boundary layer very nearly encroaches on the leading-edge bubble before the

bubble bursts. The distance separating them is only about .0]c.
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Results are summarized in Figure 18, which

shows the computed variation of static normal-force

and moment coefficients with angle of attack for the _.
a

three Reynolds numbers considered. A flagged

symbol indicates that the airfoil was undergoing

trailing-edge stall. Results of measurements

For different Reynolds numbers for the section

analyzed are not available. However, data in

Reference 41 show that a regular 001Z section

at Reynolds numbers between 3 and 6 million has

a maximum lift coefficient of about 1.6, gener-

ated at an angle of attack of 16 degrees, which

agrees fairly well with the computed values of

maximum C_of 1.7 at Re c = 3 x 10 6 and 1.8 with o

Re c = 6 x i0 , also occurring at about 16 degrees

angle of attack.

The rapid falloff in normal force with angle

of attack at higher Reynolds numbers is quite dif-

ferent from the behavior of thicker airfoils under-

going trailing-edge stall, the falloff in the latter

case being more gradual (see Ref. 22). The rea-

son for the sharp drop-off is apparently that the

pressure rise is quite steep near the leading-edge

but relatively flat aft of midchord. Thus, the sep-

aration point moves ral idly forward, once incipi-

ent separation occurs, until it encounters the

region of steep gradients near midchord (note the

variation of x s in Figures 16 and 17). On thicker
airfoils, the pressure increase along the chord is

more uniform, allowing the separation point to

stabilize at points closer to the trailing edge.

Sinusoidal Pitching Motions

The computed variations of normal-force

and moment coefficient with pitch angle during

sinusoidal pitching at a Reynolds number of two

million are compared with measured results,

from Reference 8, for reduced frequencies of
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Figure 16. LOADING AND x VARIATION DURING
S =

TRANSIENT PITCH, Re c 3x 106 , @pb/U=.025

0, . 13 and .26 in Figure 19. The predicted amounts of lift overshoot and their variation with reduced

frequency are seen to agree quite well with the test results. The primary discrepancy is in the predic-

tion of the l_ading when the airfoil is completely stalled and has a large negative pitch rate, which can

be attributed to the assumption of quasi-steady flow in the analysis of the trapped-air region.

5. APPLICATIONS TO HELICOPTER AEROELASTIC PROBLEMS

Two different problems related to blade stall me re analyzed, as described below. Consideration

was limited to leading-edge stall with chordal Reynolds number equal to two million. Because the analy-

ses were undertaken ata relatively early stage in the development of the theory, the free-stream speed

was used as the rate of growth of the trapped-air region at stall onset. Consequently, the amounts of

lift overshoot obtained were considerably less than would actually occur. It is believed that the results

were not seriously affected, however, because the degree of freedom of primary concern during unsteady

stall, blade torsional deflection, receives its excitation from the aerodynamic moment, which was rea-

sonably well represented.

Analysis of Wake-Induced Stall

Large high-frequency oscillations in pressure, torsional moment, lift and aerodynamic moment on

the retreating side were detected in flight-test data taken from a rotor blade during a maneuver, as shown

in the plots of Figures Z0 and 21 taken from Reference 42. It was asserted in Reference 42 that this res-

ponse was the result of dynamic stall induced by previously formed tip vortices which, under the man-

euver flight condition, pass under the blade at the azimuth positions indicated in Figures Z0 and Z1. To

test this hypothesis, a series of calculations were carried out of blade loading resulting from passage

over a series of three vortices of a two-dimensional airfoil with the section depicted in Figure 13. The

airfoil was free to pitch about its quarter-chord, with spring restraint and inertia chosen to give a pitch

natural frequency of 40 Hz. Computed pitch angle, lift and aerodynamic moment for vortex streamwise

spacings of 8 chord lengths (giving a reduced encounter frequency of . 39) and vertical spacing of one

semi-chord are plotted in Figure 22.
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In comparing Figures Z] and ZZ, it should be noted that the large pitch oscillations in Figure ZZ are

about the pitch natural frequency (reduced frequency of . 36) as are the torsional-moment oscillations in

Figure Zl for azimuth angles between Z70 and 360 degrees. Also, the computed high-frequency variation

in lift and moment (at three to four times the pitch natural frequency) probably could not have been de-

tected by the instrumentation employed in the flight-test measurements.

From the similarity of the curves, it would appear that the hypothesized mechanism is causing the

large high-frequency response of the blade. This is further borne out by the computed differential pres-

sures at selected chordwise stations shown plotted as a function of time in Figure 23, which exhibits the

same phase shifts (time delays) in pressure drop with chordwise position as do the measured pressures

(Figure Z0). The results further explain why the oscillation is at the pitch natural frequency, rather than

at the excitation frequency corresponding to the

vortex spacing. The large nose-down moment

exerted on the airfoil when it stalls causes the

blade to rapidly pitch down and unstall. It was

found in the computations that the blade only

travels one or two semiehords between stall on-

set and the beginning of flow reattachment. Thus,

the blade is effectively excited by a series of dis-

crete impulses, causing it to oscillate at its nat-

ural frequency.

Analysis of Stall Flutter

As was noted in Section 1, the occurrence of

large-amplitude torsional oscillations and excessive

control-linkage loads associated with blade stall

have been of particular concern recently. The

problem has prompted a number of studies of the

effects of stall on blade dynamics (e.g., Refs. 1,

17 and 18). While stall has been identified as a

causal element, the nonlinearity of the stall process,

coupled with the unsteady aerodynamic environment,

has precluded an analysis to the depth required to

gain a thorough understanding of the mechanisms in-

volved. In particular, it has not been clear whether

the blade undergoes a true aeroelastic instability, a

simple forced response, or some hybrid phenome-
non which takes on the character of one or the other

extreme, depending on flight conditions and blade

vibrational characteristics. The study to be des-

cribed was carried out in an attempt to shed some

light on this aspect of the problem.
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Elartomechanical representation - Flapping,

flapwise bending and torsional degrees of freedom 3._

were considered. The equations of motion of the

rotor blade can be written in the form (see Ref. 43):

3.0
3

(Mij _ij _Z- Tij qj)+Kiqi=Fi i=l, 2, 3

j=l 2.s

where ql is tip displacement due to flapping, qg is

tip displacement due to first-mode bending and q3 2.0

is angular tip displacement due to first-mode tor-

sion. The uncoupled natural frequencies of those _%

degrees of freedom are then given, respectively, by I.s

2 2

_fl = - fl Tll]Mll (K 1 = 0),

z 2 =K2/M22)
oafl2 = _o2 . _ T22/M22 ( _0flo

2 Z 2 2

oao = 0" - _ T33/M33 ( W@o = K3/M33)@o

The generalized mass and centrifugal-force coeffi-

cients are integrals over the blade span involving

the blade inertial properties and vibrational mode

shapes (see, for example, Ref. 43).

1,0
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Figure 23.
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COMPUTED PRESSURE TIME HISTORIES

FOR WAKE INDUCED STALL

The complexity of the aerodynamic representation precludes evaluation of the generalized forces

by the usual strip approximation. It was felt essential, however, to retain both translational degrees

of freedom in the investigation of the f_rward-flight problem, so a simple two-dimensional model of the

dynamics could not be used. Therefore, a two-dimensional airfoil suspended in such a way as to have

three degrees of freedom was analyzed. Inertial and stiffness parameters were assigned to make the

coupled natural frequencies of the two-dimensional system match those of the rotor blade.

The system analyzed is shown schematically in Figure 24. The matching of the two-dimensional

system with the blade dynamics proceeds as follows. Three generalized coordinates are first defined to

correspond to those of the blade. Clearly, angular displacement @1 should correspond to blade torsional

displacement at the blade tip. The counterparts of flapping and bending, Z/_ and Z_, respectively, are

defined by

Zfl =Alh I +Bh 2, Zfl =Azh 1 - Bh2

where

2 2 _ oafl2_ wfl - 0"2 0"22

A1 - 2 2- A2 = 2

2 2 2 Z

( "2 - "1_ )( °'2 - "t_ )
2 2 Z

( '_ '_3 ) 0"2

B -

(17)

2
and w = k./m., i = 1, 2. With the above defini-

. " 1 1

_/3 + Z._= -h l, to give the correct trans-tlons,

lational corresl_ondence. It can further be shown

that the uncoupled natural frequencies of the two-

dimensional system rratch those of the blade, pro-

vided 2

(k@ + k I lsl + k 2 is22)/Io = _@2

2 2
while t01 and WZ satisfy

2 2 2 2

_1 w2 _00 ¢a0fl

2 Z 2 2

W 1 + (1 + mz/m 1) _2 = _ + ¢016' 118)

bh 2

E ,.]__L

k 2

Figure 24. TWO-DIMENSIONAL ELASTOMECHAN-
ICAL SYSTEM
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By comparing the generalized masses of the two systems, it follows that

m I bZ/lo = -A l MII bZ/(M33 R z)

AZ/A l = MIl/(M22 R Z) _ X m

The last relation, together with Eqs. (17) and (18) fixes m2/ml:

- 1

mg/ml = ( Xm wfl Z + _ )2 Z

Equating the corresponding coefficients of the characteristic equations of the two systems provides three

additional relations, which can be solved for the coupling parameters _, lsl, and ls2. That calculation

is outlined in Appendix B.

To complete the matching,

tions are equated with the result

quasi-steady approximations to the damping terms of the flapping equa-

that

r R Mll

ml R/(-A1)=4 R RZ[ 1 - (ra/R)

U/Uo 1+ 4 [1- ra/RI z]
= -- _ sin ¢

3 1 - (ra/R)4 J

where _r R = U o. The aerodynamic reference radius r R was selected to be .75R.

The angle of zero restraint in torsion was varied periodically to approximate the effects of cyclic

pitch variation in forward flight, according to the formula

= @o [ 1 - 2 (R/rR) p sin ¢]

This variation gives nominally constant lift.

The equations of motion were solved by integrating analytically, using linear extrapolations to ap-

proximate the variation of lift and aerodynamic moment over the interval of integration. This scheme wa_

found to give satisfactory results, provided the time interval of integration is no longer than about one

fifth of the period of the coupled mode having the highest natural frequency.

Configuration analyzed - Vibrational and aerodynamic characteristics of the blade analyzed were
selected to correspond to those of the model rotor blade described in Reference 43. That blade is un-

twisted, of constant chord, with b/R = .0435, ra/R = . 174, ¢08o / 0_@o = 3.69 and xm/b = .Z16.

The test blade had a NAGA Z3012 section. The variation cf static lift and moment coefficients with

angle of attack for this section were computed from a series of transient pitch calculations and are shown

in Figure 25, together with the measured section characteristics, from Reference 41. The aerodynamic

model is seen to give nearly the correct maximum lift, but at a slightly lower angle of attack, and as indi-

cated from the variation of G m c/4, the computed center of pressure is somewhat further aft than that of

the actual airfoil section below the stall angle.

Stability in hover- Initial calculations were performed for hovering flight, to allow a direct compar-

ison with the test results of Reference 44 and to verify that the analytic models are capable of reproducing

both classical and stall flutter. First, rotor speed was varied parametrically, with the collective pitch at

a value well below the stall incidence. A classical bending-torsion instability was encountered at

[t _'_f_R/( w@ b) = 5.3 with ¢of/ ¢0_) = .803. The variation of bending, flapping, and torsional dis-

placements with°azimuth angle at flutteq" onset are shown in Figure 26. Byway of comparison, the tests

yielded classical flutter at about _ _ = 7. 1 with _f/ _@ = .72. These differences between analysis
and test results can be attributed in large part to the use 8f a two-dimensional aerodynamic model, which

cannot precisely reproduce the aerodynamic coupling between the rotational and translational degrees of

freedom.

Susceptibility of the system to stall flutter was investigated next. It was found that a torsional limit

cycle, at approximately the highest coupled natural frequency of the system, could be triggered for f_ _-"

as low as 3.4. Gomputed blade motions for stall flutter at _ _-_ of 3. 5 are shown in Figure 27.

For _;:: below 3.4, a limit cycle could not be set up, regardless of the initial conditions or the

collective pitch angle. Severe oscillations involving repeated stall and unstall could be made to occur by

imposing a large initial bending deflection. However, the flapping response modulated the torsional
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response, and caused continuous stall and/or unstall

of the blade over a significant portion of a revolution,

due to the large plunging rate generated by the flap-

ping motion. An example of this occurrence is

shown in Figure Z8. Thus, while stall flutter in-

ve]zes only the rotational degree of freedom, the

re.=ults obtained indicate that the minimum speed

for its occurrence is determined by coupling with a

translational degree of freedom.

Stability in forward flisht - The blade was

analyzed next for an advance ratio _ of . I.

Computations were carried out in the same sequence

as for hover. First, the rotational speed at

which classical flutter occurs was determined.

Then, stall-related instabilities were investigated.

3"

v

.J

A linear bending-torsion instability of the Flo-

quet type (Ref. 45) was encountered at i_# = 5.Z.

Blade motions as a function of azimuth angle at

flutter onset are shown in Figure 29. The tor- $

sional and bending displacements are seen to dis- _"

_u
play the aperiodic character typical of this type of

instability. The flapping motion is the steady-state

response to the cyclic pitch variation.

,_ -Or

An instability analogous to stall flutter in
hover was found to occur for f$ ':¢ as low as

about 4.4, with collective pitch angle greater

than 12 degrees. Blade motions for l_ ;:< = 4.8

are shown in Figure 30. The torsional displace-

ment time history, while not strictly periodic, is

nonetheless brought about by successive stall and

I I 1 I
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m

! i I
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Figure Z5. AIRFOIL SECTION CHARACTERISTICS

FOR NACA 23012

unstall. The azimuth positions at which those events occur are marked by (S) and (U), respectively, on
the _ -scale.

The blade motions for the type of instability shown in Figure 30 are not of the same character as

those of particular concern in the limiting of helicopter performance, in that the excessive torsional dis-

placements shown in Figure 30 persist over a complete revolution of the blade. The control load time

history taken from flight test (Ref. 18), shown in Figure 31 illustrates the type of stall-related blade

motions usually encountered at a thrust level or forward speed near the upper limit of an aircraft.
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Large oscillations in the control loads, presumably

deriving from blade torsional oscillations, are seen

to persist only between about %&= 270 degrees and

= 400 degrees, rather than throughout a com-

plete revolution of the blade.

A torsional displacement time history more

closely resembling the variation of control loads in

Figure 31 was obtained for _ ::-" less than 4.4, for

collective pitch angles between 12 and 13 degrees.

Results for a typical case are shown in Figure 32.

The occurrences of stall and unstall are indicated

on the abscissas. The large oscillations in torsion

are clearly related to stall, but their persistence

is not the result of successive stalling and unstalling

as would be the case for true stall flutter. The

blade appears to be responding to the sudden changes

in aerodynamic morre nt at stall onset and unstall,

as can be seen by comparing the variation of mom-

ent coefficient shown in Figure 32 with that of tor-

sional displacement, and noting the azimuth posi-

tions at which stall and unstall occur. There is

some cyclic stall-unstall within the stall zone evi-

dent in the results on the second and third revolu-

tions. However, the major contributors to the

oscillations appear to be the initial an d final pul-

ses associated with stall and unstall upoK enter-

ing and leaving the zone. There are, in general,

two cycles of torsional oscillation of excessive am-

plitude after the blade unstalls the last time on a

given revolution. The severity of the response is

apparently due in part to the suddenness of load

changes at stall and partly to the relative lack of

aerodynamic damping in pitch, particularly when

the blade is not stalled.

It could be argued that the blade torsional os-

cillations of Figure 32 are still a manifestation of

stall flutter, even though successive stall and unstall

is not taking place, since the aerodynamic moment

can undergo unstable variations when the blade re-

mains stalled throughout a cycle (Ref. 8). It may,

in fact, be the case that the large deflections do re-

sult partly from that effect, so choosing to term

IO

__ 0

4 l _

! ;1
o._o 1 1 -

i: i1
0 200 400 600 800 1000 1200

AZIMUTH, _' , deQrlfll$

Figure 30. DISPLACEMENT TIME HISTORIES FOR

STALL FLUTTER - [l::'= 4.8, @o = 13 DEGREES,

# =.l

_--- I000 .....

0 I00 200 300 400 500 600

"_ZIfVUTH, _, degrees

Figure 31. VARIATION IN PITCH LINK LOAD IN

FLIGHT TEST OF CH47 AT 123 KNOTS (FROM

REF. 18)



32

them as a simple response may be somewhat mis-

leading. On the other hand, the solutions are dis-

tinctly different from what is definitely stall flutter

obtained both in hover (Fig. 27) and in forward flight

(Fig. 30) so that label would seem to be even less ap-

propriate. Further, the persistence of the oscilla-

tions after exit from the stall zone is clearly symp-

tomatic of a response, so, for lack of a more pre-

cise term, solutions of the type shown in Figure

32 are identified in what follows as excessive res-

ponse.

Stall flutter and response boundaries - The

effect of forward speed on stall-related instabilities

was investigated by _ystematically varying the col-

lective pitch angle and advance ratio, with _ .I-"

equal to 3.89. In order to relate the results to

rotor performance, a mean lift coefficient C Lis

defined, according to

T

eL = R 2p_2 b

whereTis the time-averaged lift per unit span at

the aerodynamic reference radius. This coeffici-

ent is, to a good approximation, directly propor-

tional to the thrust coefficient (see Ref. 46).

The results obtained are summarized in Fig-

ure 33 as a plot of CL vs _ . As thrust is in-

creased at a given _ , the rotor is seen to first

encounter a region of excessive response, of the

type discussed previously, and then, for # of

.2 or less, a region where stall flutter occurs.

Increasing advance ratio has the effect of suppres-

sing the tendency for stall flutter. At _ = .Z ,

stall flutter occurs at CL = '85' but a further in-

crease in CL results in excessive response again.

At ** = .3 a limit-cycle type of oscillation could

not be triggered at all. As a result, stall flutter

is confined to a region somewhat as indicated by

the shaded area in Figure 33.

The suppression of stall flutter at high advance

ratio is apparently caused by an effect similar to

the one encountered at low rotor speed in hover,

whereby the flapping motion prevented a limit

cycle from occurring. This can be seen from the
blade motions obtained for /_ = .3 and eL = "78'

plotted in Figure 34. On the first revolution, as

the blade enters the stall zone on the retreating

side, {{ appears that a limit cycle is being set up,

with repeated stall and unstall occurring. How-

ever, at about _ = 420 degrees, the flapping

motion has built up in response to the large cyclic

pitch changes, producing a negative plunging rate

sufficient to keep the blade unstalled over the re-

mainder of its passage on the advancing side.

Then, when the blade again enters the stall zone,

the large positive flap-induced plunging rate pre-

cludes unstall until exit from the stall zone at

about _ = 670 degrees. As a result, the blade

subsequently undergoes excessive torsional res-

ponse, rather than stall flutter.
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6. RECOMMENDATIONS FOR FURTHER RESEARCH

The need for further study is indicated in the

following areas.

Unsteady Viscous Effects

From the comparison of computed and mea -

sured loading during sinusoidal pitching, it was

concluded that once an airfoil is completely stalled,

the pressure in the trapped-air region is strongly

influenced by unsteady effects. As a further indi-

cation that this must be the case, data in Reference

8 show that an oscillating airfoil which is completely

stalled throughout the cycle undergoes a large lift

hysteresis. Both theoretical and experimental

studies are needed to determine the major con-

tributors to this effect.

Leading-Edge Bubble

Despite much conjecture and considerable

study, the actual mechanism for bubble bursting

remains undefined. A major stepin resolving the

problem would be to determine what factors are

controlling where transition occurs in the laminar

shear layer. An interesting adjunct to the re-

: 2 lilt!ill
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Figure 34. DISPLACEMENT TIME HISTORIES AT

HIGH ADVANCE RATIO - [_* : 3.89, C L =.78,

_ =.3

search would be a study of the influence of suc-

tion or other similar techniques on bubble bursting, which would be applicable to possible active pre-

vention or delay of leading-edge stall.

Stall Onset and Unstall Processes

Experiments are needed to define the details of the processes of formation and wash-off of the

trapped-air region during unsteady leading-edge stall so that workable analytic models can be formu-

lated.
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APPENDIX A

SOLUTION FOR STALLED FLAT PLATE IN STEADY FLOW

First, consider the case with x R > b. Equations (2) through (5) become, for steady flow with con-

stant pressure Pd in the dead-air region:

b

"_ _'({') d_ = 2 Ua , -bZ- x Lx (a-l)
l

_" x - _ -- -- S

-b

b

a'(×)+ I _/ _'(_)d_ _ Lx_Lb
-- 2 Ua , x s _ (A-Z)

IV J X -

-b

x R

1 i (_(_') d_" Z(P°° - Pd) _b_'(x)+ -- = (A-3)x - _" PU XsL x
J

x S

x

R (_(f) d_" Z (Pco - Pd)]_!__ = bZ--x _Lx R (A-4)T x-_" pU

x s

The first step is to reduce the number of equations by solving for "_ on the interval (-b, Xs) in

Eq. (A-l) and solving for (T on the interval(b, XR) from Eq. (A-4). Formally inverting these two

singular integral equations {see Ref. 47}, it is found that

1
Y (×)=

_](xs - x)(x+ b)

- l

-q( ×s - x)(x+ b)

2 Ua - 1 "_(X) dX
_ V(Xs- _)( _ + b)

fx l'-x
-b

b V( h+ b)(A- Xs)

A - 2 m Uax - f X-x "_(X) dX

x s

d_" +A

(A-5)

if(x)=
rV(XR - x)(x - b)

xR
(Pco - Pd) 1 ?/ b

)w"
pU

x S

6¢(X) dX V(XR-_')( _-b)

_-X

d_" +B

1

7rV(x R- x)(x - b)

m f _

2r(Poo -Pd) x

pU
b

x
S

V(XR - k)(b - _) /f(A) dX

x -

(A-6)
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where A' and B' are as yet undetermined constants. If Eqs. (A-5) and (A-6) are substituted in Eqs. (A-2)

and (A-3), respectively, and certain of the resulting integrals are evaluated, the following pair of integral

equations is obtained;

b

_(×) + TI f

x

S

b

"6" (x) + rl f

x s

.¢ f+b)¢ :- X__s) ]
(x + b)( x xs) j

1/2

"_"(_') d_" 2 Uotx - A'/Tr

x - f _](x - Xs) ( x + b)

(A-7)

1/2

: ]- x)% - x)j

0" (f) df g (Poo - Pd))B'/_r - - PU x

x - f %](x R - x)( b - x)

(A-8)

It is required that

assigned:

dr" be well behaved at x = Xs, which, from Eq. (A-7), allows the value of A' to be

b

A' 1 f _, _ +b
-- =2 U a x +- )f (y) d_
"IT s '/I" 71 - x s

x s

Equations (A-7) and (A-8) can be combined by formally solving Eq. (A-8) for _ :

_/(b-x)(x R -x) O'(x)= 1

Tf%](b - x)(X-Xs)

Z(Poo- Pd)

OU

+ 7r

- _'( _')_/(x R - f)(b - f )

1

-xs)

_( ¢- Xs)(X R - _" )

%/(b - _" )( _" - Xs)
d_" + C

_'-x

b

c- / "6(_)(b-f) f-x

x s

x --X PU

d

2

B' Z(Pco- Pd) (b'xs)-_ 0U 8

If O" is to be at least integrable at x = b, the quantity in brackets must vanish as x --+ b. This provides

a relation between the undetermined constants C and B'. The continuity of O" at x = x s provides the

other relation needed to solve for those constants, with the result that

O"(x)= ,rr (x _ _ - Xs 0 U

x s

Substituting Eq.(A-9) and the relation for A' in Eq. (A-7), it is found that

b

x- :I _-x s
x s

(xX+_IE x
Z(Poo- Pd) t/ x + b

d_ 2Ua+
pU _ x R - x

(A-10)
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Now, let

ix + b T (x)g(x) = (x R - x) _,--Xs

a

z(x) = _/ x + b
I

X i - X

With some manipulation of the integrandof Eq. (A-10}, that relation can be written in the form

[dz ] d_ - Z Ua + "IT' z(x)
1

_(x)-z(_) 1+z (x) pu
x S

(A-:i)

This equation can be solved for g. Letting z s = z (Xs) and z b = z (b),

"....... [i<a + kp_] _"g(z) = "]1" z - z s z b -_ z

z s

(A-IZ)

where the undetermined constant was assigned to make g well behaved at z b and k a = Ua, k =(p_-pa)/ pU.

If the integrand of Eq. (A-1Z) is expanded in partial fractions, the resulting integrals can be evaluated by

standard methods. By substituting the result in previous relations, expressions for 1"and 4r over the

whole interval for which they are defined can be obtained. The complete solution for x R > b is:

v::,::/ t :F ,. jzs - /7-:7 ]
_(x) = + (Co + Cl z +(Co - Cl z) -- - b < x < Xs;

Z s - Z ZS + Z ' --

l _/ (z b - z)(z + Zs)
_(x)

z _ 1 +7 -_ (C° + C1 z), x s _< x < b;

1 i (z _ Zs)(Z - Zb)_'(x): _ (C o- C 1 z) 1 +z Z
S

Xs_<x_<b;

_r(x):

where

[1 - Zs + z b

z 1 + ZsZ (Co - C1 z) ---
+m s

- (C O + C Iz)_ ] , b _< x _< x R.

C ° = (k a - kp Zs) _{o + (kp + k a Zs) _6_ 1

C 1 = (k a z s + kp) _o - (ka - kp Zs)_ 1
l

_[n =I_(I - zs zb)Z + (zs + zb)Z + ('l)n (l - z s Zb)

{ Z (i +z Z) (i + Zb 2)
s

1/2

n=O, I.

exactly the same form as Eq. (A-]Z).

1/z

[(:::+1 -r
_'(×)=

+ l %krR

Omitting the details, the solution for x R < b is:

__ +C I - + . ,-b<x< "
r r s + r I -- -- xs'

The solution for x R < b is obtained by an analogous procedure, there again being four coupled singu-

lar integral equations in (_ and "6 . An equation for _" on the interval (x s, x R) is obtained which is of
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while and C 1 have the same definitions as Co and C1, respectively, but with z s

replaced by r R.

replaced by r s and z b
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APPENDIXB

DETERMINATIONOFCOUPLINGPARAMETERS

The characteristic equation for the rotor blade is

3

E B2k k 2k

k=0

=0

where
2 2 _2
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The characteristic equation for the two-dimensional system is found to be
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- 2 _Dz _2= + r is2 ) - Bal A1 { _ is I m isz

- c_ 2 _z+ r Is2) + B Is2bl = A2 ( L_Jfl 2 ls 1 m

Equating DJD 6 to B0/B6, D2/D 6 to B_/BLa o and DA/DL_ v to B4/B 6 provides three relations in the three un-

knowns _', YSl and ls2. If a I and b 1 are eliminated, the following equation for _is obtained:

(r I t 2 - r 2 tl) + (r I s 2 - r 2 Sl) (t 2 s 1 - t 1 s2) = 0

where

h hb ga2
rl = " a + Z

gb

_2 --2

= ( (..0_ - ¢.0_ u ) ga x,s2

rz : I- _z _ 1

2 hbgaF

Sl=S2+ 2
gb x

tI = (I - C 6 W 2) Bz/B 6 - f2 + _)2 F +

h b F 2

2 2
gb _

-- Z

tZ = (i - C6 _2) (B z - B0/ OJ_ )/B 6 - f2

in which

F = f4 - B4/B6 + (B4 C6/B6 - C4) _2

+f0/ ¢_8 z + (_0_ F

With some algebraic manipulation, a polynomial of fourth degree in _2 can be extracted from that equation.

The value of _-is taken to be the square root of the smallest positive root of that polynomial. The original

equations are then used to solve for a I and bl, from which lsl and Is2 are readily obtained.






